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INTRODUCTION

If IE Ck-l[a, b], k > 1, then deBoor has shown [7] that, for a given
partition Lt of [a, b], one can construct polynomial spline functions s, of
degree k - 1, with knots of prescribed multiplicity in Lt, satisfying, for
O~j~k-l,

sup I Dif(x) - DiS(x) I ~ c(3)k-i-1 W(Dk-1j; LJ)
xe[a,b]

(1)

where c is independent of Lt and f, w denotes the modulus of continuity of
Dk-1j, and 3 denotes the maximum mesh spacing. If Dk-1j is of bounded
variation on [a, b], then (1) implies the obvious inequality

sup [Dif(x) - DiS(X)I ~ C(LJ)k-i-1 V;r(Dk-lj)
xe[a,b]

(2)

where V;r( g) denotes the supremum of the variations in g over intervals of
length not exceeding 3. If, moreover, D"j exists and is bounded on [a, b],
then (2) implies

sup [Dif(x) - DiS(X)I ~ c(3)k-i sup I Dkf(x) [ . (3)
fi~~ fi~~

Much of the activity in the investigation of error estimation in uniform
approximation by spline functions has centered about obtaining estimates of
the form (3), frequently under the additional assumption that DkfE C[a, b].
DeBoor himself obtained the result (3), for j = 0, somewhat earlier [6],
using local spline approximation by moments. DeBoor's work in [6] was a
refinement of earlier work of Birkhoff [2] who had considered the cases
k = 2m and had made mesh restrictions not assumed either in [6] or in [7].
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In the case of uniform approximation by interpolating polynomial spline
functions, estimates of the form (1) for uniform meshes in the cases k = 2m
have been obtained by Swartz and Varga [14], extending earlier results of
the first author [13]. Although simple interpolation conditions are imposed
at interior mesh points, full sets of endpoint constraints appear necessary,
as described in [14]. Earlier, Birkhoff and deBoor [3] had obtained estimates
of the form (3), using almost uniform meshes, in the cases k = 2 and k = 4,
and Ahlberg, Nilson, and Walsh [I] had established such results for k = 2m
with f and s periodic and with uniform mesh spacing.

Similar results for uniform approximation by interpolating polynomial
spline functions are available when the splines are so-called Hermite splines
of odd degree 2m - 1 between knots, with maximum contact through
derivatives of order m - I at each knot. In this case, (3) holds for k = 2m
with no restriction whatsoever on Ll (see Birkhoff, Schultz, and Varga [4]
where a stronger version of this theorem is proved).

In the case when polynomial interpolating spline functions are replaced
by interpolating spline functions locally annihilated by operators of the
form L *L, L a nonsingular linear differential operator of order m, estimates
of the form (3), or estimates with sUP",e[a,bj [D2mf(x)1 replaced by
sUP",e[a,bjl L*Lf(x) [ in (3), are available only in the case of full contact,
i.e., Hermite, interpolation at the knots (see [14]). Otherwise, one can establish
only that the exponent of Lf is 2m - j - t and, if m ~ j ~ 2m - 1, a mesh
restriction is required (see, e.g., Schultz and Varga [12]). This estimate,
however, is valid for any f such that D2mf E L2[a, b].

It is the purpose of this paper to construct spline functions S E Ck - 2[a, b],
locally annihilated (between preassigned knots) by nonsingular linear
differential operators A of order k, satisfying estimates of the form (2),
which are of course stronger than the estimates of the form (3). We do not
assume differentiability of Dk-1j; it need only be of bounded variation.
Mesh restrictions of the form sup Lljinf Ll ~ ex < 00 are imposed, however.
Here, A need not be self-adjoint, but may be an arbitrary nonsingular linear
differential operator with suitable coefficients on a closed interval [a, b];
self-adjoint operators with continuous coefficients are included. A is thus
a natural generalization of Dk and as such possesses minimal support splines,
which extend the basic polynomial splines of degree k - 1, and which
determine integral kernels, in terms of which the approximation error may
be conveniently expressed.

The technique employed which enables us to obtain the stronger (2) is that
of local factorizations of A of the form A = cpDD for some nonvanishing
function cp and nonsingular operator D of order k - 1. It is possible to
decompose [a, b] into the finite union of adjacent closed intervals on which A
may be so represented.
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I wish to express my gratitude to Professor Michael Golomb, who suggested
to me the technique oflocal factorization, and who also suggested the method
of proof in Lemma I below.

1. CONVERGENCE REsULTS

Let A be a linear differential operator on [a, b] with real coefficients given
by

k-l

A = Dk + L aiD;,
;~o

k ~ 1, (Ll)

where a; E Ci[a, b], 0 ~ j < k. Let TJA denote the null space of A. Define
lJ(', g) E TJA for each gE [a, b] by:

[D,/lJ(x, g)]",=< = D;,k-l , O~j~k-1. (1.2)

It is known (see e.g., [16, pp. 75-78]) that the function lJ has the representation,
on [a, b] X [a, b],

k

lJ(x, g) = L u;(x) u;*(g)
;=1

(1.3)

where {u;hk are a basis for TJA and where {U;*}lk are the functions in the last
column of W-l[Ul ,..., Uk], where the Wronskian W[ul '00" Uk] is given by
(Wi;) = (uji-l»), I ~ i ~ k, I ~j ~ k. The functions {u;*}: are in the null
space of the adjoint operator A * given by

k-l

A*f= (-l)k Dkf+ L (-IV D;(aJ).
;=0

(1.4)

A * is a nonsingular linear differential operator of order k with basis {u;*}~ .
If a = Xo < Xl < ... < X" = b is a partition of [a, b] the function

s E Ck-2[a, b] is called a A-spline with simple knots at the points {Xi} if
S E Ck(Ui(Xi ,Xi+J) and As(x) = 0 if X =1= Xi, 0 ~ i ~ n. The numbers
Lf = maxi (Xi+l - Xi) and ,,;;) = mintCxi+l - Xi) are the maximum and
minimum mesh spacings. Notice that the function O(x, g) defined by

(1.5)

is a A-spline with the single interior knot f For example ifA == Dk then
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The operators A = Dk and A = D(D2 + 12) ••• (D2 + m2) have the
property of global factorization in the form DQ, Q nonsingu1ar of order one
less than A. More generally, if A is any nonsingular operator, it admits the
local factorization rpDQ mentioned earlier. This is of central importance in
the error estimation and will be described now, following Golomb [9] and
Karlin and Studden [11, Ch. 8, §5].

If x* is any point of [a, b], let the functions ifii E T).1, 0 ~ i ~ k - 1, be
defined by

O~j~k-l. (1.6)

The Wronskians W[ ifio], W[ ifio , ifil]"'" W[ ifio , ifil ,..., ifik-l] have the value 1
at x* , hence are greater than or equal to some fixed positive constant in some
closed interval 1* containing x* and contained in [a, b]. We agree to call such
an interval a P61ya interval for the operator A. Defining on 1* the functions,

it is clear that wo , WI"'" Wk- l are strictly positive functions with Wi in
Ck-i(I*). Define, for U E Cl(I*),

(1.8)

Then we have the factorization on 1* ,

(1.9)

In particular A has the form
A = rpDQ, (1.10)

where rp = Wo ... Wk-l and Q = (1jWk-l) Dk-2 ... Do. It is clear that there
exists a finite number of P6lya intervals, II ,12 , ••• , If[ such that Iv n I", has
at most one point if v =1= p- and such that Uv Iv = [a, b]. By (1.10), on each
set Iv , 1 ~ v ~ q, A has the factorization

(1.11)

where rpv E Cl[Iv] and does not vanish on Iv and where Qv is a nonsingular
operator of order k - 1.

We are now prepared to state the major theorem of the paper. We write
sup L:I for .3 and inf L:I for 4.

THEOREM I. If A is an arbitrary nonsingular linear differential operator
satisfying (1.1), if k ~ 1 and iffE Ck-l[a, b] with Dk-lj of bounded variation
on [a, b] and if !!2rx is a collection of partitions of [a, b] with sup L:Ijinf L:I ~ ex
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for all LJ E P)" , then for each LJ in P)" such that Lf is sufficiently small and such
that LJ contains at least 2k + 1points there exists a A-spline s with knots in LJ
satisfying,for 0 ~ j ~ k - 1,

sup I Djf(x) - Djs(x)I ~ C(Lf)k-j-l max V.J(QJ)
xE[a,b] I ";;v";;q

(1.12)

where the Qv are the operators of(1.1 1) oforder k - 1. Here, V.J( g) represents
the supremum of the variations of g over subintervals of [a, b] of length not
exceeding Lf and c is independent offand LJ E P)" • In particular, (2) holds and,
if Dkjexists and is bounded on [a, b], (1.12) also implies,

sup I Djf(x) - Djs(x) I ~ C'(Lf)k-j sup IAf(y)j .
ft~~ ~~~

(1.13)

Remark. If j = k - 1, the supremum in (1.12) and (1.13) is understood
to be taken over x rf: LJ, since in this case Dk-lS does not exist at the points of
LJ. In what follows, if ~ is a A-spline, Dk-l~ is undefined at the knots of ~.

We shall defer the proof of Theorem 1 to Section 3, after we obtain, in
Section 2, some preliminary results of independent interest. In particular,
we shall construct generalizations of the well-known basic splines of compact
support. These will playa basic role in Section 3, in the proof of Theorem 1.
As an interesting application of the ideas, we explicitly compute, at the end
of Section 3, the generalized basic trigonometric splines of degree m, i.e.,
the case A = D(D2 + 12) ... (D2 + m2). We now close Section 1 with an
additional remark and corollary.

Remark. It is possible to weaken the smoothness assumptions on the
coefficients ai of A. In fact, if A is any operator of the form (1.1) with con
tinuous coefficients on [a, b] such that A has an adjoint operator

k-l

A* = (-l)k Dk + L biDi,
j~O

k ~ 1,

with continuous coefficients on [a, b], then Theorem 1 holds. In particular,
if A is of the form (1.1), is self-adjoint and has continuous coefficients then
Theorem 1 holds. We thus obtain the following corollary, with A = L*L.

COROLLARY 1. If L = L;:o aiDj with am(x) = 1, m ~ 1, on [a, b] and
ai E Ci[a, b] and if LJ is a sufficiently fine partiton of [a, b] containing at least
4m + 1 points then the estimate, for 0 ~ j ~ 2m - 1,

sup I Djf(x) - Djs(x)I ~ c(Lf)2m-i-1 V.J(D2m-1f)
xE[a,b]

(1.14)
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(2.1)

holds, where f E C2m-1 [a, b], D2m-1 f is of bounded variation on [a, b], s is an
L*L-spline (frequently called an L-spline) with knots in Ll and c is independent
off and ofLl as before. IfD2mfexists and is bounded, then the right side of this
latter expression may be replaced by either a constant factor times (J)2m-i
SUP:llE[a,bll D2mf(x)I or times (J)2m-i SUP:llE[a,b] I L*Lf(x)l, respectively.

2. GENERALIZED B-SPLINES

Let a ~ to < t1 < '" < tk ~ b be any set of k + 1 consecutive points in
[a, b]. If {u,} is a fixed basis of TJA' and {u/} are the corresponding adjoint
functions, i.e., u,*, ... , Uk* are the elements of the last column of W-1[U1,..., Uk],
or fixed constant multiples thereof, let fJo , , fJk be any solution of the system

fJoUl *(to) + fJ1U1*(t1) + + fJkU1*(tk) = 0

fJoU2 *(to) + fJ1U2*(t1) + + fJkU2*(tk) = 0

fJOUk*(to) + fJ1Uk*(t1) + ... + fJkUk*(tk) = O.

Then we have the following theorem.

THEOREM 2. The function
k

M(x) = M(x; to ,... , tk) = L fJjO(x, t;)
i=O

is a A-spline with knots at to ,... , tic whose support is contained in [to , tk]'

Proof. We need only show that x ~ tk => M(x) = O. But if x ;?: tk , then
by (1.3),

M(x) = to fJl)(x, t;) = to fJ; l~1 u,.(x) u,.*(t;)I'
where 8(x, 1) = L:=l u,..(x) u,.*(t), which is seen to be zero upon multiplication
ofthe p.th equation of (2.1) by u,,(x) and the addition of the resultant columns.
This completes the proof of Theorem 2.

Nontrivial solutions of (2.1) always exist. Furthermore, if tk - to is suffi
ciently small it follows from theorems on the zeroes of null solutions of
nonsingular linear differential operators (see [17, p. 346]) that any nontrivial
solution possesses the property that every fJ; *0, 0 ~j ~ k. IfA *= (-l)k Dk,
the functions u,.*(t) may be chosen to be the functions t,.-1, 1 ~ p. ~ k, and
the numbers fJ; may be chosen to satisfy

fJ; = k!j D. (t, - t;), 0 ~ j ~ k ...,...,
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In this case, M is simply the well-known fundamental spline (see Curry and
Schoenberg [5]).

(2.2)

A particularly simple expression is available for the coefficients /3j if we
introduce the functions

l
UI*(t1) ... U1*(tj-1) Ul *(tj+1) ... U1*(tk) Ul *(x) I

V{x) = .....

, Uk*(t1) ... Uk*(tj-1) Uk*(tj+1) ... Uk*(tk) Uk*(x)
(2.3)

where 1 ~ j ~ k. Then, clearly,

/3j V;(tj) = -/30V;(to), I ~ j ~ k. (2.4)

For the estimation of the error in Section 3, it will be necessary to show
that I /3j//3o I are bounded, I ~ j ~ k, independently of J, provided
sup J/inf J ~ ex. We will also show that I /3j//3o I is a differentiable function
of to . Specifically, we have the following lemma.

LEMMA 1. Let J = maxi(ti+l - ti) and inf J = mini(ti+l - ti) with J
sufficiently small. Let /30"'" /3k solve (2.1) with /30 =1= 0 and suppose
sup J/inf J ~ ex for some positive constant ex. Then /3j//3o is a differentiable
function of to and there is a constant C, independent of the choice of{ti}, such
that

I /3j//3o I ~ C, I ~j ~ k. (2.5)

Proof To prove (2.5) we observe, by (2.4), that

/3j/fJo = - V;(to)/V;(tj). (2.6)

Using only elementary properties of determinants, in this case, subtracting
the first column of the respective determinants of V;(to) and V;(tj) from
columns 2 through k and dividing by appropriate factors, then subtracting
column 2 from 3 through k, etc., we obtain (2.7) below where i has values
between 1 and k

V;(to) fIi"ej (to - ti)
ViCtj) = fIi"ej (1j - ti)

I
ul7tl) U1*(t

f
' t2) ••• Ul *(t1 , , tj- 1 ': tj+1 , , tk , to) I

X Uk*(t1) Uk*(t1 , t2) ••• Uk*(t1 , , tj_1 , t1+1 , , tk , to) (2.7)

l
UI*?1) Ul*(tt ' t2) ... Ul*(t1 '00" tj-1 ~ t1+1 , , tk , tj) I
Uk*(t1) Uk *(t1 , t2) '" Uk*(t1 ,... , tj- 1 , tj+1 , , tk , tj)
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where the v-th column of each determinant consists of (v - 1) order divided
differences of the basis functions taken on the indicated points. Using the
representation for v-th order divided differences,

1 00

j(~l ,... , ~V+1) = ;r f-00 M(x) j(vl(X) dx, (2.8)

where M is given by (2.2) with v in place of k and ~i+1 in place of ti , we obtain
the estimate

where the points ~1 '00" ~v+1 need not be in order. (2.9) follows from (2.8)
and the property

r M(x)dx = 1.
-00

Now if y > °is such that the Wronskian satisfies

X E [a, b]

it is clear upon using (2.9) in (2.7) with ~1 = t1 and v = 0, 1'00" k ~ 1, that
we can choose 3 sufficiently small so that

which establishes (2.5). The differentiability of f3i/f3o as a function of to
follows immediately from (2.3) and (2.6).

3. SPLINE CONSTRUCTIONS

This section will be devoted to the proof of Theorem 1 and, in particular,
to the construction of the noninterpolating A-spline approximation s to the
given function f

Proof of Theorem 1. Iff E Ck- 1[a, b], and Dk-lj is of bounded variation,
thenfhas the Stieltjes integral representation, for each x E [a, b],

j(x) = u(x) + ±f O(x,~) epvCt) d(QJ)(~)
v=l Iv

(3.1)
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where U E TJA is defined by Diu(a) = Dif(a), 0 ~ j ~ k - 1. By assumption,
41 has at least 2k + 1 points. For each gE [a, b] let the points tIm,· .. , tig)
be consecutive points of 41 to the right ofg(left, if necessary) satisfying

4 ~ I tl - g I ~ 23

I tl - gI < I t2 - gI < ... < I tk - gI •
(3.2)

Notice that we can choose tIm, ... , tk(g) invariantly with respect to g for g
between any two successive knots of 41, say for gE [xv, xvH). Now define,
for each gE [a, b], the function y(', g) as follows. We make the convention
that to = f

k

y(x, g) = O(x, g) - (1/130) L f3j O(x, t j ).

i=O
(3.3)

Here the points tl , ... , tk are chosen for each g as just indicated and the
numbers 130,"" 13k are a normalized nontrivial solution of (2.1). Notice that
130 ,..., 13k are differentiable in g for gE (xv, xvH). It is clear that y(', g) is a
A-spline with knots in 41 for each fixed g. Notice that gis not a knot of y(', g).
Also, y(', g) - 0(-, g) is a A-spline with knots at g, tl , ... , tk and has support
confined to the closed interval with endpoints gand tk • This in turn implies
that, for each fixed x, y(x, .) - O(x, .) has support on the interval

fa; = [a, b] () [x - (k + 1) 3, x + (k + 1) 3]. (3.4)

In the case that A is taken to be Dk, the function y(', g) - 0(·, g) is a basic
polynomial spline. Similar constructions for this case have been considered
by Dailey [8] and Ziegler [15] in the study of L l approximation.

We are now prepared to define s. For each x E [a, b] we define

sex) = u(x) + ±f rpvY(X, g) d(QJ)(g)
v=1 Iv

(3.5)

where u E TJA is defined by (3.1). It is clear that (3.5) defines a A-spline with
knots in 41. We propose to investigate I Dif(x) - Di sex)! for 0 ~ j ~ k - 1.
For x fixed in [a, b] we have, by (3.1) and (3.5),

I Dif(x) - DiS(X)I = I±f rpvDa;i{O(x, g) - y(x, g)} d(QJ)(g)1
v=l Iv

= I~1 LvnJ
z

rpvDa;j{O(x, g) - y(x, g)} d(QJ)(g)j. (3.6)
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(3.8)

Designating the subintervals of Iv n J~ determined by the points of J by
Iv,. and using (3.3) in (3.6) with g = to we have

[Djf(x) - Djs(x)[ = I~ ~ f
lv

" CPvD./ lto (f3i/f30) O(x, ti)\ d(DJ)(to)l·

(3.7)
Now using the Taylor expansion

(x - y)k-l fX (x - t)k-l
O(x, y) = (k _ 1)! + 'Y (k _ 1)! DlO(t, y) dt

(see (1.2)) we obtain

DxjO(x, y) = «x - y)~-j-1/(k - j - 1)!) + O«x - y)~-j) (3.9)

where the constant in the order expression does not depend on x or y. Upon
substituting (3.9) into (3.7) and making use of Lemma 1, we obtain

1c

IDjf(x) - DiS(X)I ~ eLL f I CPv(to) I L (x - ti)~-j-1 Id(DJ)(to) I (3.10)
I:t IJ, Iv,." i=O

and the final result of (I.I2) is immediate from (3.10), since the number of
integrals on the right side is at most [2(k + 1) cx + 2q], where the bracket
denotes the greatest integer, less than or equal to the quantity indicated.

We shall close the paper by computing the kernel O(x, g) corresponding to
the operator A = D(D2 + J2) '" (D2 + m2) and suitable coefficients f3v.
In this case, 1, sin x, cos C, ... , sin mx, cos mx for a basis form the (2m + 1)
dimensional null space of A. It is readily seen that the function

m

O(x, g) = L CXvcos vex - 0,
v=o

where the coefficients CXv solve the system,

(3.11)

m

" v2P(-1)P cx = 0.l.J v 'P.rn ,
v~o

o~p ~m, (3.12)

satisfies (1.2) with k = 2m + 1. In (3.12) we have adopted the convention
that 00 = 1. Using Cramer's rule and the expansion for the Vandermonde
determinant, we readily compute

CXv = 1/ fi (j2 - v2
),

j~O

j~v

1 ~ v ~ m. (3.13)
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If the basis, {eii"'H:~m , is chosen in (2.1) the coefficients f3v may be readily
obtained. They are given by

f3v = TI~=o+l (eitj - eitv) ,
N'v

It is clear that the function

O~v~2m+1. (3.14)

2m+l \

M(x; to ,... , t2m+l) = v~ Re 1

is a trigonometric B-sp1ine of order m with knots at to ,... , t2m+l and support
on the interval [to , t2m+l]'
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